您当前所在位置: 首页 > 讲座报告 > 正文
讲座报告

2025年复杂环境光电信息感知科学与技术国际学术年会

来源:物理学院          点击:
报告人 专家学者等 时间 9月26日-30日
地点 西安天骊君廷酒店 报告时间

报告会主讲人汇总表


申办单位

物理学院,光电工程学院

活动主题

2025年复杂环境光电信息感知科学与技术国际学术年会

主讲人1

姓 名

Zeev Zalevsky

所在单位

Bar-Ilan University, Israel

职称/职务

教授

简历

Zeev Zalevsky 教授分别于 1993 年和 1996 年在特拉维夫大学获得电气工程学士学位和直接博士学位。现任以色列巴伊兰大学工学院院长、全职教授。他的主要研究领域包括光学超分辨率、生物医学光学、纳米光子学以及基于光纤的处理和传感架构。Zeev 教授已发表 600 余篇同行评审论文、350 篇会议论文,撰写 9 本书籍(其中 6 部为专著,3 部为编辑),参与 36 本书的章节编写,并持有约 100 项专利。他在各类学术会议上进行了约 670 次报告,其中超过 250 次为特邀/主题或全会报告。因其杰出贡献,Zeev 教授获得了众多国内外奖项,并当选为美国光学学会 (OSA)、国际光学工程学会 (SPIE)、电气电子工程师学会 (IEEE) 等多个科学学会的会士。

报告题目

Machine learning for microwave radiation based remote and obscured bio-sensing

报告

主要观点

Non-invasive measurement and sensing of vital bio-signs, such as respiration and cardio-pulmonary parameters, have become essential tools in the evaluation process of a subject physiological condition. The demand for new enabling technologies that facilitate remote and non-invasive techniques for such measurements continues to grow. While previous research has made strides in continuous monitoring of vital bio-signs using laser, in this presentation we introduce a novel technique for remote non-contact measurements based on radio frequency. We utilize microwave radiation at e.g. 18GHz and use machine learning algorithms to measure the vital bio-signs of the illuminated subjects by analyzing the changes in the generated back reflected microwave speckles. Unlike laser-based methods, this innovative approach offers the advantage of penetrating through walls and tissues, enabling the measurement of respiration and heart rate. Diverging from traditional radar systems, our method introduces a unique sensing concept that enables the detection of micro-movements in all directions, including those parallel to the antenna surface. The ability to penetrate barriers such as walls and tissues opens new possibilities for remote monitoring in various settings, including home healthcare, hospital environments, and even search and rescue operations.

主讲人照片

主讲人2

姓 名

Jinchang Ren

所在单位

Robert Gordon University (UK) , Guangdong Polytechnic Normal University (China)

职称/职务

教授

简历

Dr. Ren(任教授)是英国罗伯特戈登大学(Robert Gordon University)教授,同时兼任中国GPNU特聘教授。其主要研究方向包括图像分析、计算机视觉、多模态融合、高光谱成像、机器学习及相关应用领域。他已发表超过400篇高质量期刊与会议论文,其中250余篇被SCI索引,研究成果在Google Scholar上的被引用次数超过14,700次,H指数为59。

他曾担任多个国际会议及论坛的主席或联合主席。目前,担任多个SCI期刊的编辑,包括《IEEE Transactions on Geoscience and Remote Sensing (TGRS)》,并担任《Frontiers in Imaging》的主编。其指导学生多次获得研究奖项,包括2017年IET图像与视觉领域最佳博士论文奖(英国唯一获奖者)及2024年《Digital Signal Processing》(Elsevier)年度最佳论文奖等。

报告题目

AI-Driven Multimodal Sensing and Fusion ---Opportunities and Challenges

报告

主要观点

Considering the differences and complementarity among various sensors, multimodal perception has increasingly become a trend in Earth observation remote sensing and industrial automation. With the continuous development of AI technology, multimodal fusion has evolved from simple data-level, feature-level, and decision-level fusion into new modes of cross-modal and cross-domain fusion. This will cover how to fully leverage these new modes to achieve effective multimodal fusion, leading to successful applications in different sensing and vision tasks. Specific application examples include traditional fusion in ocean remote sensing, such as sea ice segmentation and offshore energy facility detection and measurement, as well as tasks like change detection and anomaly detection under cross-modal and cross-domain fusion based on deep learning models, and industrial automation. Finally, related challenges and future research directions are further analyzed and discussed.

主讲人照片

主讲人3

姓 名

Gérard Gouesbet

所在单位

University of Rouen Normandy, France

职称/职务

教授

简历

鲁昂国立应用科学院名誉教授。以法语和英语撰写或合著多部著作,发表论文600余篇,并在400余场国际学术会议上担任主讲嘉宾。入选斯坦福大学“全球前2%高被引科学家”榜单。曾获京都大学70周年纪念基金会资助(1988年)、法兰西共和国学术棕榈骑士勋章(1990年)、《无线电科学杂志》最佳论文奖(中文版,1994年)、弗罗茨瓦夫大学50周年金质奖章(1995年)、应邀为《应用光学》创刊50周年特刊撰写纪念综述论文(2013年,列为Top50作者)及范德赫斯特奖(2020年)。更多详情请参见其领英主页、Research Gate及谷歌学术引用档案。

报告题目

On laser light propagating in free space at a speed slower than the speed of light: The case of Bessel-Gauss beams

报告

主要观点

Ten years ago, it has been demonstrated experimentally (with quantum interference experiments using the Hong-Ou-Mandel effect) and theoretically (using an angular spectrum decomposition) that laser light propagates in free space at a speed smaller than the speed of light. As a consequence, a new effect has been demonstrated, namely the fact that an ultrashort pulse propagating in free space should be broadened by a certain amount of time. In the case of Gaussian beams, such broadenings have been found to be too small for an easy experimental demonstration. A typical value for such a broadening was equal to 100 femtoseconds, and has been found to be too small for an easy measurement and even for an easy detection. Ideal Bessel beams would allow arbitrary large broadenings, but such beams are unphysical because they carry an infinite amount of energy. This leads to the idea that Bessel-Gauss beams, which can be viewed as ideal Bessel beams with a Gaussian apodization which makes them physical, should allow larger pulse broadenings that in the case of Gaussian beams. This idea will be discussed in the present talk and it will be theoretically demonstrated that, indeed, as expected, Bessel-Gauss beams may generate large pulse broadenings, including of the order of the nanosecond.

主讲人照片

主讲人4

姓 名

Igor V Minin

所在单位

Tomsk Polytechnic University, Russia

职称/职务

教授

简历

伊戈尔·V·米宁(Igor V. Minin)是俄罗斯物理学家,俄罗斯计量科学院通讯院士,托木斯克理工大学物理学全职教授。他以在光学物理新方向的贡献闻名,主要包括太赫兹三维成像、介观电子学(介尺度光子学)以及亚波长结构光(涉及声学和表面等离子体激元)和高能量密度物理领域。米宁是任意三维形状粒子产生光子喷射现象研究的先驱;2015年他与双胞胎兄弟奥列格·V·米宁(Oleg V. Minin)合作发现了“光子钩效应”——一种具有亚波长曲率和束宽的人工弯曲光束。他还在实验上证明了声学光子喷射、表面等离子体激元光子喷射和光子钩现象的存在。在米氏尺寸参数约为十的介电结构中(处于波动光学与几何光学之间的区域),他与同事发现了一些异常新效应,包括超共振——介电介尺度粒子中激发的巨型磁场(相比中子星中的磁场),基于高阶法诺共振实现。他与兄弟共同创立了“冻结液滴光学”新领域,发现了光子钩和法诺共振的时域效应。他与合作者基于马格努斯效应的光学模拟,开创了旋转圆柱体和球体内部及附近超共振和光子钩异常光学特性研究。这些应用前景表明了一个称为“介观电子学”(Mesotronics)的新兴光学方向。米宁还通过强激光-物质相互作用产生的脉冲等离子体喷流分析,对年轻恒星物体、活动星系核和天体物理喷流进行了创新研究。他是450多篇研究出版物(包括22部专著,其中12部为俄文、9部英文和1部中文)及200多项专利的作者或合著者,并担任多个国际期刊编委和国际会议主席。



报告题目

The Superresonance and related phenomena: The Discoveries That Was Not Done More Than One Hundred Years Ago (I)

报告

主要观点

Although the Mie theory was created about 150 years ago majority of discoveries found from this theory were done during last 35 years. Many physical effects were encrypted within the formulas, and they were just waiting for somebody to decrypt them.

主讲人照片

主讲人5

姓 名

Oleg V Minin

所在单位

Tomsk Polytechnic University, Russia

职称/职务

教授

简历

奥列格·V·米宁(Oleg V. Minin)教授是俄罗斯物理学家,俄罗斯计量科学院通讯院士,托木斯克理工大学物理学全职教授。他因开创多个新学科方向而享有盛誉,主要包括太赫兹三维波带片、介观电子学(介尺度光子学)、超聚能装药(hyper cumulative shaped charge)以及涵盖声学与表面等离子体激元的亚波长结构光技术。米宁教授在物理学的多个领域奠定了坚实的研究基础,并在若干方向保持全球优先地位,例如:利用衍射光学实现冲击波聚焦、爆炸等离子体天线、近场亚波长结构光、介尺度声学透镜以及超聚能装药。2015年,他与双胞胎兄弟伊戈尔·V·米宁(Igor V. Minin)合作,在光学、等离子体激元学和声学领域共同发现了“光子钩效应”(photonic hook effect)——这是一种能产生具有亚波长曲率和束腰的人工弯曲光束的现象。此外,他们还通过实验验证了表面等离子体激元光子喷射(photonic jet)和光子钩现象的存在。在米氏尺寸参数约为十、处于波动光学与几何光学之间的介电结构中,米宁教授及其同事发现了一些新的异常效应,包括介电介尺度粒子中的高阶法诺共振(Fano resonance),亦称“超共振效应”(super-resonance effect)。此效应能在粒子内部激发堪比中子星磁场的巨量电磁场。他与合作者还基于光学马格努斯效应(optical Magnus effect)的类比,开创了对旋转介电球内部及附近超共振和光子钩异常光学特性的研究。他与兄弟共同创立了“冻结液滴光学”(freezing droplet optics)新领域,揭示了法诺共振与光子钩在时域中的非凡效应。这些非凡特性及其应用标志着光学领域一个充满前景的新方向——“介观电子学”(Mesotronics)的形成。米宁教授基于超聚能原理,对强激光-物质相互作用产生的等离子体喷流进行了开创性研究,该研究有助于深入理解天体物理喷流(如源自年轻恒星体和活动星系核的累积喷流)以及冲击波现象。奥列格·V·米宁是150多项苏联/俄罗斯专利的发明人或共同发明人,并发表了约450篇研究论文,其中包括22部专著(12部俄文、9部英文、1部中文)。


报告题目

The Superresonance and related phenomena: The Discoveries That Was Not Done More Than One Hundred Years Ago (II)

报告

主要观点

Although the Mie theory was created about 150 years ago majority of discoveries found from this theory were done during last 35 years. Many physical effects were encrypted within the formulas, and they were just waiting for somebody to decrypt them.

主讲人照片

主讲人6

姓 名

Qingsheng Zeng

所在单位

University of Quebec in Outaouais, Canada

职称/职务

教授

简历

曾庆生(Qingsheng Zeng)教授现任加拿大魁北克大学乌塔瓦伊斯分校(Université du Québec en Outaouais, UQO)教授、博士生导师,并兼任渥太华大学(University of Ottawa)、卡尔顿大学(Carleton University)及加拿大国立科学研究院能源材料与电信中心(INRS-EMT)的兼职教授与博士生导师。他曾任加拿大政府通信研究中心(Communications Research Centre Canada, CRC)的研究工程师及高级研究工程师。曾教授的研究与教学涵盖多个领域,包括飞机天线分析与设计、电磁兼容与干扰(EMC/EMI)、超宽带技术、无线电波传播及计算电磁学。他已发表200余篇被SCI和EI收录的论文及技术报告,独立撰写一部专著并合著两个书籍章节。其在“户外环境中超宽带辐射的聚合干扰分析及某些传播模型的适用性”项目中的研究成果,已被加拿大工业部频谱管理与电信政策司纳入《超宽带技术无线系统应用咨询文件》,并被国际电信联盟(ITU)视为重要贡献。曾教授多次获得技术及技术服务奖项,2011年被评为加拿大通信研究中心最具影响力研究人员之一,2015年入选中国山西省“百人计划”特聘专家,2017年及2019年两度受聘为广东省海外名师,2020年受聘为西安电子科技大学“华山学者”讲座教授,2023年1月获中国科协“HOME计划”特聘专家称号,并于2023年12月当选吉林省院士专家联合会理事。

报告题目

A Dual-Band Multi-Beam Reflectarray Antenna Based on Polarization Selection Technique for Sub-Terahertz Applications

报告

主要观点

A single-layer-substrate dual-band multi-beam reflectarray antenna based on polarization selection technique is proposed for sub-terahertz (sub-THz) applications in this paper. For the antenna element, two circular rings with grooves and different sizes are orthogonally nesting to each other to yield dual-band characteristics. Notably, a straight-bar microstrip line is used to combine both ends of the small-size ring, yielding Y-polarized selection feature, whereas a pair of arc-shaped phase shift lines are attached to the outer of the large-size ring, forming X-polarized selection characteristic. Furthermore, the digital coding metasurface together with the single- and multi- focus phase compensation techniques are separately adopted to realize the four-beam radiation and dual-beam scanning radiation in the lower and upper frequency bands for the antenna array. Measured results show that a wide separated elevation angle of up to 104◦ and a high aperture efficiency of 49.2% are obtained at the lower frequency of 135 GHz, while a low scanning loss of 1.6 dB and another high aperture efficiency of 29% are realized at the upper frequency of 170 GHz. Additionally, high peak gains of 19.7 dBi and 26.3 dBi are also achieved for the dual bands, respectively. Therefore, it might be a potential candidate for the future 6G point-to-multipoint large-capacity, wide-coverage and high-resolution scanning communications.

主讲人照片

主讲人7

姓 名

CHEUNG WAI CHAN

所在单位

Free University of Brussels, Belgium

职称/职务

教授

简历

Jonathan Cheung-Wai Chan(陈正伟)教授是高光谱遥感及其应用领域的专家,擅长运用新颖的机器学习算法与深度学习方法。他于1999年获得香港大学博士学位后不久,便赴美国马里兰大学学院公园分校地理系担任研究科学家,期间参与了多项美国国家航空航天局(NASA)与全球制图相关的项目,主要应用C5.0、Bagging和Boosting等机器学习算法。2001年至2004年,他在比利时鲁汶InterUniversity MicroElectronics Research Center (IMEC) 担任博士后工程师,派驻至布鲁塞尔自由大学(Vrije Universiteit Brussel, VUB)电子与信息学系(ETRO),从事欧洲项目研究,内容包括利用热红外传感器和无人机高清多光谱分析等遥感方法进行人道主义排雷。2013年至2015年,他获得玛丽·居里学者奖学金(Industry-Academia Partnerships and Pathways, IAPP项目),在意大利特伦托的Fondazione Edmund Mach机构从事研究,课题聚焦于高光谱与激光雷达(Lidar)融合技术在林业 inventory 中的应用。自2015年起,Jonathan就职于布鲁塞尔自由大学工学院,为多个硕士项目讲授遥感数据数字处理课程。他曾在IEEE国际地球科学与遥感研讨会(IGARSS)上主持关于高光谱数据空间超分辨率和亚像素分类的专题会议。此外,他还担任多个伊拉斯谟+(Erasmus+)高等教育能力建设项目的协调员,这些项目主要与东盟国家合作,致力于开发将地理信息应用于自然灾害缓解、气候智慧型农业、海洋生态学等领域的新教育项目。

报告题目

Hyperspectral remote sensing, AI and important Earth Observation applications

报告

主要观点

Over the next decade, hyperspectral (HS) satellite imagery is expected to move from being a specialized research tool into a mainstream geospatial capability that underpins generic remote sensing applications such as environmental monitoring, precision agriculture, resource management, and even national security. The evidence is everywhere. With newly launched and slated HS satellite missions, both public and private, indicating confident investments of billions. For Earth Observation applications, the new commercial products are targeting constellation of satellites, at high spectral resolution (5 nm), high spatial resolution (5m) and high temporal resolution, for some application such as GHG monitoring some expected daily. In general, optical HS wavelengths at full stretch spans 400 nm to 2500 nm. Publicly available HS data (e.g. PRISMA, EnMAP) are acquired at 30m which limits its use of many potential applications. To mitigate this limitation, researchers rely on image enhancement methods such as fusion/pan sharpening, spatial super resolution, and more recently spectral super resolution via Sparse Theory and Deep-learning based methods. Airborne including aircraft and drone-based HS data is also becoming conventional for a broad range of applications such as habitat mapping and biodiversity research. Fused with thermal and lidar data makes it powerful data resource. It serves as the base for ground truth references and evaluation for spaceborne products. Under the context of robust AI, I will discuss some recent development in EO HS data, and collaboration experience in environmental-AI topics (e.g. natural disasters, marine ecology), as well as the challenges and relevance of HS remote sensing and AI.

主讲人照片

主讲人8

姓 名

Wei Lin

所在单位

The Hong Kong Polytechnic University, Hong Kong SAR, China

职称/职务

教授

简历

林教授现任香港理工大学电气与电子工程系助理教授,并兼任香港城市大学太赫兹与毫米波国家重点实验室成员。他于2022年7月至9月期间担任伦敦大学学院访问讲师。此前,他于2016年10月至2018年9月在悉尼科技大学全球大数据技术中心担任博士后研究员;2018年10月至2021年5月担任校长博士后研究员;2021年5月至2022年9月晋升为讲师并获澳大利亚研究委员会早期职业研究员(DECRA)基金资助。2012年8月至2013年8月,他曾任新加坡南洋理工大学研究助理。他的研究方向涵盖天线与射频电路、应用电磁学、物联网系统无线充电技术、微波/毫米波/太赫兹器件及其应用。林教授现任IEEE天线与传播学会(AP-S)最佳论文评选委员会委员、青年专业委员会委员、IEEE香港分会AP/MTT联合章节秘书,并担任《IEEE Transactions on Antennas and Propagation》副编辑。

报告题目

AI-Assisted ireless Power Transfer Enabled Supercapacitor-Energized IoT Sensor System

报告

主要观点

Far field wireless power transfer (WPT) enabled Internet-of-Things (IoT) applications are the emerging technology and the future trend along with the rapid development of 5G IoT ecosystems. WPT-enabled IoT devices enjoy many advantages as battery-free, environmental-friendly, capable of operating in remote places without manual maintenance. This talk will introduce a series of advanced antenna technologies for far field WPT-enabled battery-free IoT system. In particular, the recent work about AI-assisted WPT enabled supercapacitor-energized IoT sensor system will be introduced.

主讲人照片

主讲人9

姓 名

Zhen Yuan

所在单位

University of Macau, Macao SAR, China

职称/职务

教授

简历

袁教授现任澳门大学健康科学学院(FHS)及认知与脑科学中心全职教授。其主要研究方向为生物医学光学、认知神经科学和神经影像学。袁教授已在其领域内的高水平期刊发表论文350余篇,包括《Science Advances》、《Nature Communication》、《Molecular Psychiatry》、《Research》、《Microbiome》、《Journal of Behavioral Addictions》、《Psychological Medicine》、《Neuroimage》、《Cerebral Cortex》、《Cortex》、《Human Brain Mapping》、《Small》、《Advanced Functional Materials》、《Nano Letters》、《ACS Nano》、《Biomaterials》、《Angewandte Chemie International Edition》、《Theranostics》、《Optics Letters》、《Optics Express》、《Applied Physics Letters》等。袁教授现任《Quantitative Imaging in Medicine and Surgery》编委、《Journal of Innovative Optical Health Sciences》编辑、《BMC Medical Imaging》高级副编辑,以及《Frontiers in Human Neuroscience》副编辑。

报告题目

Bioengineered Apoptotic Bodies for Trauma Brain Injury Therapy

报告

主要观点

Microglia modulation plays an essential role in the treatment of trauma brain injury (TBI), whereas mesenchymal stem cells (MSCs)-derived apoptotic bodies can modulate the microglia in a natural process. In this study, a TBI therapy platform based on bioengineered apoptotic bodies derived from MSCs (ALP) were constructed to stimulate natural MSCs apoptosis, modulate microglia to release anti-inflammatory factors, and promote neuronal proliferation. ALP was prepared by chimeric integration of membrane proteins of apoptotic bodies (ApoM) with gastrodin and Cy5-loaded liposomes. In particular, ALP can actively target microglia and neurons while both gastrodin and ApoM components can inhibit the activation of NF-κB signaling pathway in microglia. Meanwhile, gastrodin can be released into the high reactive oxygen species (ROS) microenvironment to stimulate neuronal proliferation, whereas ApoM can stimulate the microglia that are switched into M2-phenotype to release inflammatory factors and neurotrophic factors. Both in vivo neurobiology and behavior studies demonstrated that ALP can effectively alleviate inflammation, improve cognitive and motor functions, and enhance the metabolic activity in TBI mice. This study offers a novel strategy to effectively stimulate the immune response of microglia for the recovery of brain injury. To the best of our knowledge, this is the first study to inspect the biological mechanism and therapeutic efficacy of MSCs-derived apoptotic bodies for TBI.

主讲人照片

主讲人10

姓 名

Piotr Zdańkowski

所在单位

Warsaw University of Technology, Poland

职称/职务

教授

简历

Piotr Zdańkowski(彼得·兹丹科夫斯基)博士是华沙理工大学(Warsaw University of Technology)机械电子学院微力学与光子学研究所的研究助理教授。他专注于先进光学成像技术,主要研究方向包括超分辨率显微镜、自适应光学、定量相位成像(QPI)以及光学衍射层析成像(ODT)。Piotr于2018年获得邓迪大学博士学位,在读期间致力于开发将自适应光学集成到受激发射损耗(STED)显微镜中的系统,用于生物样本的三维成像。目前,他在华沙理工大学共同领导定量计算成像实验室(QCI Lab),主导多项前沿成像方法的研发,包括共光路定量相位成像与光学衍射层析、傅里叶叠层显微成像(FPM)、无透镜显微镜以及超分辨率荧光显微镜技术。

报告题目

Towards Robust and Reliable Fourier Ptychographic Microscopy for High-Resolution, Large Field-of-View Biomedical Imaging

报告

主要观点

Fourier Ptychographic Microscopy (FPM) has emerged as a transformative computational imaging technique that overcomes the classical trade-off between resolution and field-of-view (FOV). By synthesizing a high numerical aperture from multiple angle-varied illuminations, FPM enables high FOV, high-resolution, and quantitative phase reconstructions at relatively low hardware cost. Yet, despite its promise, widespread adoption has been hindered by barriers in usability, calibration complexity, and the fundamental challenge of incomplete phase recovery. To address accessibility, we developed the FPMapp, an open-source, intuitive graphical user interface designed to make FPM reconstruction available not only to experts but also to non-specialist users. Built on a Quasi-Newton reconstruction engine, the software incorporates GPU acceleration, background suppression, noise reduction, and robust misalignment correction. By lowering the computational and technical entry barrier, FPMapp significantly broadens access to FPM, enabling high-quality reconstructions even on standard brightfield microscopes equipped with LED arrays. For reliable experimental performance, we further introduce the Automatic LED Calibration (ALC) method. This sample-agnostic, two-step calibration procedure corrects translational misalignments using Fourier spectrum symmetry and compensates rotational errors through subpixel registration. Unlike model-heavy or phantom-based approaches, ALC is simple, fast, and easy to implement, making it equally suitable for non-experts seeking robustness and for experts requiring precision in demanding experimental scenarios. From a metrological perspective, a persistent limitation of FPM lies in its inability to accurately retrieve low spatial frequency phase information, due to the absence of phase encoding in brightfield illuminations. To overcome this, we propose a hybrid FPM+TIE approach. By augmenting the standard FPM dataset with just a single defocused on-axis image, the Transport of Intensity Equation provides the missing low-frequency content, which is seamlessly combined with the high-frequency information from FPM. This simple yet powerful addition yields broadband, quantitative phase reconstructions with enhanced fidelity across spatial frequencies. By integrating open-source reconstruction, robust calibration, and hybrid phase retrieval, we establish a framework that makes FPM both more accessible and more reliable, paving the way for its broader application in biomedical imaging, digital pathology, and optical metrology.

主讲人照片

主讲人11

姓 名

Xin Yu

所在单位

The University of Queensland, Australia

职称/职务

副教授

简历

宇欣是昆士兰大学的副教授。他在清华大学获得通信与信息工程博士学位,在澳大利亚国立大学获得计算机科学博士学位。他的研究兴趣涵盖计算机视觉和机器学习的广泛主题。他在顶级会议和期刊上发表了 100 多篇论文,如 CVPR、ECCV、NeurIPS、ICLR、TPAMI 和 IJCV。于博士获得了澳大利亚研究理事会(ARC)的早期职业研究人员发现奖(2023 - 2025 年)。他还获得了 WACV 2020 年的最佳论文荣誉提名奖,其论文还获得了 CVPR 2020 年的最佳论文提名奖。他于 2021 年获得谷歌研究学者奖,并于 2023 年获得谷歌包容性研究奖。他还多次在 CVPR、ACCV 等研讨会的挑战赛中夺冠。

报告题目

Human Pose Estimation for Individuals with Limb deficiencies

报告

主要观点

Human pose estimation aims to predict the location of body keypoints and enable various practical applications. However, existing research focuses solely on individuals with full physical bodies and overlooks those with limb deficiencies. As a result, current pose estimation annotation formats cannot be generalized to individuals with limb deficiencies. In this work, we introduce the Limb-Deficient Pose Estimation task, which not only predicts the locations of standard human body keypoints, but also estimates the endpoints of missing limbs. To support this task, we present Limb-Deficient Pose (LDPose), the first-ever human pose estimation dataset for individuals with limb deficiencies. LDPose comprises over 28k images for approximately 100k individuals across diverse limb deficiency types and ethnic backgrounds. The annotation process is guided by internationally accredited para-athletics classifiers to ensure high precision. In addition, we propose a Limb-Deficient Loss (LDLoss) to better distinguish residual limb keypoints by contrasting residual limb keypoints and intact limb keypoints. Furthermore, we design a Limb-Deficient Metric (LD Metrics) to quantitatively measure the keypoint predictions of both residual and intact limbs and benchmark our dataset using state-of-the-art human pose estimation methods. Experiment results indicate that LDPose is a challenging dataset, and we believe that it will foster further research and ultimately support individuals with limb deficiencies worldwide.

主讲人照片

主讲人12

姓 名

Denis LEBRUN

所在单位

University of Rouen Normandy, France

职称/职务

教授

简历

丹尼斯·勒布朗出生于1963年。他自2001年起担任诺曼底大学(法国鲁昂)教授。他的研究兴趣包括用于粒子表征的数字在线全息,速度测量,应用于流体力学的数字和光学图像处理。他在这些领域发表了80多篇论文。

报告题目

A presentation of experimental Digital In-line holographic configurations for 3D velocity/size measurement of particles in fluids

报告

主要观点

Digital in-line holography (DIH) is well adapted to diagnostics in complex installations where optical accesses are not easy. Generally, it can be said that for a given situation where classical transmission imaging is feasible, in-line holography can also be applied. The reconstruction process of holograms is straightforward because a simple propagation equation (Fresnel Integral) is needed to process the 2D fringe pattern in order to recover the whole 3D volume to be investigated. Moreover, it is now well admitted that, under this configuration, the requirements concerning the coherence degree of the illuminating wave are very low and the use of light sources such as laser diodes or femtosecond lasers is even recommended for improving the signal-to-noise ratio of the reconstructed images. Under some particular situations (elliptic recording wave for example), more sophisticated algorithms can be used to improve the reconstruction process. For all these reasons, DIH is particularly interesting for diagnostics in flows where size, location, velocities or trajectories of particles have to be measured. Several examples of configurations are given for various applications such as near-wall velocity measurements for the characterization of a boundary layer, droplet sizing in a nuclear power plant, extraction of 3D trajectories of particles in a vortex and characterization of a moving droplets during the stretching of a viscoelastic filament.

主讲人照片

主讲人13

姓 名

Tomasz Kozacki

所在单位

Warsaw University of Technology, Poland

职称/职务

教授

简历

托马斯·科扎基于 2005 年在华沙理工大学获得了光子学领域的博士学位,并于 2013 年获得了教授资格。他目前仍担任该校的教授一职。他的科研工作涉及数字全息术、全息显示器、全息显微镜、计算衍射和光学衍射断层扫描等领域。他独立或与他人合著了超过 30 篇科学期刊论文以及超过 50 篇会议论文。

报告题目

Shape measurements at high resolution using digital holographic microscope

报告

主要观点

Digital holographic microscopy is a suitable measurement technique for non-contact, short measurement time, and highly accurate surface characterization of optical and mechanical components. This work will present challenges and research results related to the development of measurement techniques enabling characterization of continuous and non-continuous surfaces by using Digital holographic microscopy. The continuous surfaces reconstruction algorithm, which enables accurate shape reconstruction, will be discussed. Then, for the same type of object system modification, including the super-resolution concept and point source illumination, will be presented. For both presented solutions, system implementation and new shape reconstruction algorithms will be shown. For the measurement of non-continuous surfaces, the Digital holographic microscopy is referred to as Digital Holographic Profilometer. This method is based on a scanning approach where measurement is performed from a set of holograms captured, and then the result is obtained by constructing the Longitudinal Scanning Function, which, after analysis, results in the measured shape. Five developments of Digital Holographic Profilometer will be discussed: (i) Plane wave scanning, (ii) Single shot method, (iii) Plane wave scanning for High NA measurement, (iv) Spherical wave scanning for Extreme NA measurement, and (v) high resolution measurement using structured illumination. The last discussed approach presents primary research results, while the other ones show results of published research.

主讲人照片

主讲人14

姓 名

Marc Brunel

所在单位

University of Rouen Normandy, France

职称/职务

教授

简历

马克·布伦尔毕业于法国帕莱索的光学研究所研究生院(1992 年),并于 1996 年在巴黎萨克莱大学获得博士学位。他曾在鲁昂诺曼底大学担任助理教授(1996 年),现为该校教授(自 2009 年起)。他的实验室名为 CORIA,专注于能源、喷雾、多相流、光学计量学等领域。他的主要研究课题涉及多相流中的光学和激光计量学(干涉成像、数字全息术、光场成像……)。他已在同行评审期刊上发表了 143 篇论文。目前他是《光学通讯》(爱思唯尔)的编辑。

报告题目

Characterization of ice particles using interferometric particle imaging

报告

主要观点

Interferometric Particle Imaging enables to measure the size of sub-millimetric particles with a relatively large field of view, at a working distance that can reach tens of centimeters. It is thus well adapted to meteorology applications where the concentrations in particles are not too high. While the interferometric images of droplets are two-wave interference patterns, the interferometric images of ice particles are speckle patterns. The properties of the speckle are mathematically linked to the shape of the particle.

This talk will present the development of this measurement method, from the establishment of principles and models to their validation in laboratory (freezing columns, icing wind tunnel) and in-flight tests. The analysis of the speckle patterns is a fundamental point in order to perform accurate measurements. Image processing methods involving phase-retrieval algorithms or neural networks will be presented and the results obtained will be discussed. In a second part, we will focus on the limits of the method: overlapping of interferometric patterns, sampling conditions, sizing limits. The last study will be in particular devoted to the estimation of the low-sizing limit. Using the Discrete Dipole Approximation, we will calculate the exact interferometric images of ice particles whose shapes are rigorously predicted using phase-field modelling. Results will enable to quantify rigorously the limits of the technique, when the size of ice particles can be less than ten micrometers.

主讲人照片

主讲人15

姓 名

Arun Pattathal Vijayakumar

所在单位

Indian Institute of Information Technology, Indian

职称/职务

研究员

简历

阿伦·P·V 博士目前是印度信息学院斯里城蒂鲁帕蒂分校(一所具有国家重要性的机构)计算机科学与工程系的教师。他还领导着该学院的空间分析和机器智能小组。他的研究领域包括无人机和卫星遥感、深度学习、可解释的人工智能、地理空间技术以及强化学习。在加入印度信息学院斯里城分校之前,他曾担任华为技术公司研发部门的助理副总裁。他毕业于印度理工学院孟买分校,并在以色列本-古里安大学完成了博士后研究。他获得了以色列高等教育委员会颁发的杰出博士后奖学金和博士奖学金。他还曾在意大利技术研究所、芬兰奥卢大学、美国威斯康星大学麦迪逊分校以及新加坡国立大学的罗尔斯·罗伊斯实验室等机构担任博士后研究员。他已在著名的国际期刊和会议上发表了 50 多篇论文。他是来自不同国家机构(包括印度空间研究组织和科学和技术部)的多个项目的首席研究员。他因在“德里斯蒂”项目中的贡献而得到了印度陆军的嘉奖。他还获得了多项旅行补助金和最佳论文奖。他的团队由 5 名工科硕士、5 名博士生以及 3 名博士后研究员组成。他担任了许多知名期刊的审稿人,并是各类会议的技术委员会成员。

报告题目

Physics-Informed, Super-Resolution Optics for GAN-Centric Leveraging Camera Enhanced Optoelectronic Perception

报告

主要观点

Recent advances in optics and machine learning reveal a gap between camera limitations and AI-enhanced image reconstruction. Many methods produce visually plausible results that contradict physical optics, risking inaccurate spectral or spatial data. We introduce a physics-informed GAN for super-resolution in optoelectronic perception. Camera-specific priors—PSFs, MTFs, spectral responses—are embedded in both generator and discriminator. The generator uses PSF-conditioned deblurring, residual-attention blocks, and pixel-shuffle upsampling. The discriminator enforces physical consistency in blur and edges. Training combines adversarial loss with spectral unmixing accuracy and explainability via SHAP gradients. The model generalizes across cameras without recalibration, avoids hallucinations, and provides confidence maps. It achieves fast inference while maintaining physical accuracy, benefiting applications from remote sensing to autonomous navigation.

主讲人照片

主讲人16

姓 名

Pierre A. P. Peralta

所在单位

IMDEA Nanoscience (Madrid), Spain

职称/职务

教授

简历

皮埃尔·潘塔莱昂是一位专注于量子材料领域的理论物理学家,主要研究电子关联、超导性以及石墨烯基系统中的拓扑现象。他在马德里 IMDEA 纳米科学研究所领导着二维材料理论研究小组,其研究工作结合了分析建模和数值模拟,以探索扭曲和未扭曲的石墨烯多层结构、人工超晶格以及由相互作用驱动的相态。他已发表了超过 30 篇同行评审的论文,包括发表在《自然材料》、《物理评论快报》和《美国化学学会纳米》上的作品,并与欧洲、中国和美洲的顶尖实验团队合作。他近期的项目包括开发基于 KL-RPA 的理论以研究石墨烯中的超导性,以及设计人工晶格势来设计新的量子态。

报告题目

Unconventional Superconductivity and Optical Signatures of Highly-doped Graphene

报告

主要观点

Recent advances in intercalation have enabled ultra-high doping in graphene, shifting the Fermi level near extended van Hove singularities and enhancing electronic interactions. This regime is a fertile ground for unconventional superconductivity. Building on our theoretical framework for superconductivity in graphene, we develop effective tight-binding models that incorporate superlattice potentials and dopant-carbon hybridization, reproducing key features observed in photoemission, such as folded π-bands and high-order van Hove singularities. We also compute optical signatures that can help identify superlattice symmetry and emergent phases in experiments. In this talk, I will present these results alongside recent developments in twisted and untwisted graphene multilayers, where similar mechanisms may give rise to superconductivity. Together, these systems offer a unified perspective on correlation-driven phases across different graphene-based platforms.

主讲人照片

主讲人17

姓 名

Tani Rin

所在单位

RIKEN Center for Advanced Intelligence Project, Japan

职称/职务

研究员

简历

林谷博士是日本理化学研究所应用物理研究所的一名研究科学家,同时也是东京大学的一名特聘研究员。他的专业兴趣和专长在于将人工智能应用于医学成像和计算摄影领域。在移居日本之前,他在新加坡的 A*STAR 机构担任博士后研究员,从事生物医学成像方面的机器学习研究。目前,他担任“月光计划”(关于持续学习和记忆机制)和“ACT-X 计划”(关于注视辅助人工智能)的项目负责人。他的研究兴趣在于模拟人类的新皮质以增强人工智能,尤其是在医疗领域的应用。

报告题目

Artificial Cortex from Evolution: Synthesizing Multimodal Intelligence for Next-Generation AI

报告

主要观点

“Artificial Cortex from Evolution” seeks to design a next-generation artificial cortical architecture inspired by natural evolution. By emulating the robustness and adaptability of biological neural systems, this work aims to develop AI systems with human-like cognitive capabilities, minimizing reliance on human annotation. This research is built upon three key pillars: (1) Computational Photography, which enables the extraction and reconstruction of physical properties from visual data; (2) Human Gaze-Based Attention Mechanism, which aligns AI perception with human cognitive processes to enhance interpretability and efficiency; and (3) Multi-Modal Large Language Models (LLMs), which integrate diverse data modalities for advanced reasoning and understanding. By synthesizing these foundations, we propose an artificial cortex capable of learning from multimodal inputs, with broad applications in Medical AI, Nuclear Fusion, and Human-Friendly Robotics, demonstrating its transformative potential in addressing critical global challenges.

主讲人照片

主讲人18

姓 名

Steven Gao

所在单位

Chinese University of Hong Kong, Hong Kong, China

职称/职务

教授

简历

史蒂文·高是香港中文大学电子工程系的教授,同时担任该校智能电磁系统研究中心的主任。

他的研究兴趣涵盖智能天线、相控阵、MIMO(多输入多输出)、多频段/宽频带天线、反射阵列、发射阵列、滤波天线以及无线系统等方面。他与他人合著/合编了 3 本书(《空间天线手册》、威利出版社,2012 年;《圆极化天线》、IEEE - 威利出版社,2014 年;《低成本智能天线》、威利出版社,2019 年),发表了 500 多篇论文,并拥有 20 多项专利。在加入香港中文大学之前,他是英国肯特大学的教授。他在 2001 年至 2022 年期间曾在伯明翰大学、诺森比亚大学、萨里大学和肯特大学工作。他于 1999 年在上海大学获得微波工程博士学位。高教授是 IEEE 会士,也是 IEEE 《天线与无线传播简讯》(AWPL)的主编。他曾担任欧洲天线与传播协会的代表(2020 - 2022 年),并担任 IEEE 的杰出讲师(2014 - 2016 年)。他曾担任 2021 年英国 - 欧洲 - 中国毫米波与太赫兹技术国际研讨会(UCMMT)的联合总负责人,是 2018 年《IEEE 论文集》“小型卫星”专题的主编,也是 2022 年《IEEE 电磁学与传播学报》“低成本宽角波束扫描天线”专题以及 2015 年《卫星通信天线》专题的主编。

报告题目

Ultra-Wideband Wide-Angle-Scanning Phased Array Antennas for Integrated Sensing and Communications and 6G NTN

报告

主要观点

The past decades saw rapid development of wireless communications, radar sensing and imaging systems using more and more frequency bands. Future generations of wireless systems will require the integration of multiple functions, e.g. communications, sensing, imaging, navigation and wireless power transfer, etc, into one single system. In the meantime, future communication networks will see the seamless integration of terrestrial networks and non-terrestrial networks (NTN) using Uncrewed Aircraft Systems (UAS), High Altitude Platforms (HAPs) and satellites in low-earth orbit (LEO), Medium Earth Orbit (MEO), Geostationary Earth Orbit (GEO) and Highly Elliptical Orbit (HEO). Innovations in phased array antennas are critical for the success of these future wireless systems. In particular, the phased array antenna is expected to be capable of operating over an ultra-wideband frequency range and achieving wide-angle beam scanning while having a low profile, compact size, low power consumption, low complexity and low cost. Hence there are lots of challenges to be overcome in the field of phased array antennas. This invited talk will provide an overview of state-of-the-art development in ultra-wideband wide-angle beam-scanning phased array antennas using tightly coupled arrays (TCA). TCA has become a very popular technique for realizing ultra-wideband wide-angle beam scanning phased array antennas. Some recent examples will be discussed. Future challenges will also be discussed at the end of the talk.





主讲人照片

主讲人19

姓 名

Mikołaj Rogalski

所在单位

Warsaw University of Technology, Poland

职称/职务

助理教授

简历

米科拉伊·罗加尔斯基是华沙理工大学 QCI 实验室的一名助理教授,从事计算成像和光学显微镜领域的研究工作。他的研究重点在于二维和三维定量相位成像、数字全息术、傅里叶多光子成像技术以及用于生物成像的无透镜全息方法。

报告题目

2D and 3D lensless holographic microscopy

报告

主要观点

Lensless holographic microscopy is an emerging imaging modality that enables quantitative phase imaging across an exceptionally large field of view (even exceeding 100 mm²) while maintaining a micrometer-scale resolution (typically ~1–2 µm). By eliminating conventional lenses, this technique significantly reduces system complexity, size, and cost, making it highly suitable for compact, scalable imaging platforms. In this work, we present a comprehensive overview of numerical strategies employed to enhance phase retrieval accuracy in lensless in-line holography. We explore algorithmic approaches aimed at improving signal-to-noise ratio and spatial resolution, including multi-height and multi-wavelength phase recovery. Furthermore, we address challenges related to 4D sample localization, where both spatial and temporal dynamics of the sample are reconstructed from 2D holographic measurements. Finally, we extend the lensless microscope to a lensless tomographic platform, demonstrating 3D reconstructions of volumes exceeding 25mm3 (with exceptional over 1 mm depth), highlighting the system’s potential for high-throughput biomedical or environmental monitoring applications. Our findings underscore the potential of computational techniques to push the limits of lensless holography, paving the way for real-time, wide-field, volumetric imaging in resource-constrained settings.



主讲人照片

主讲人20

姓 名

Julianna Winnik

所在单位

Warsaw University of Technology, Poland

职称/职务

助理教授

简历

朱莉安娜·温尼克博士(原名科森卡)是华沙理工大学的一名助理教授,她在华沙理工大学从事全息技术领域的研究,尤其专注于全息断层扫描以及将机器学习技术应用于计算成像方面。她的工作旨在推动用于生物医学和工业应用的高分辨率、无标记成像方法的发展。她是定量计算成像实验室的成员,该实验室由马切伊·特鲁西亚克教授领导,她还参与了光学、数据科学和成像技术交叉领域的多个跨学科项目。在实验室之外,她平衡着学术事业与作为两个女儿(阿琳娜和莉迪亚)母亲的角色。

报告题目

Diffraction gratings aided common-path optical diffraction tomography

报告

主要观点

Optical Diffraction Tomography (ODT) is a label-free imaging technique that enables non-invasive, 3D reconstruction of the refractive index (RI) distribution in transparent and semi-transparent microscopic samples, such as biomedical cells and tissue fragments. To reduce coherent noise and achieve high-fidelity tomographic reconstructions with a high signal-to-noise ratio, ODT is ideally implemented using a common-path interferometric configuration combined with low-coherence illumination. It has been shown that the standard tomographic reconstruction algorithm, originally developed for fully coherent illumination, remains valid under partially coherent illumination. Thus, reducing coherence improves the signal-to-noise ratio without compromising reconstruction accuracy. However, a challenge arises from the use of common-path architectures, which often employ shearing interferometric setups. In such systems, the interference pattern is formed by the superposition of two transversely shifted copies of the object beam, resulting in measurements of phase derivatives rather than absolute phase. Until recently, tomographic reconstruction in this context required numerical integration of the shearing phase maps to recover the full phase information prior to applying reconstruction algorithms. This step was cumbersome, error-prone, and required two separate derivative measurements in orthogonal directions. Recent work has addressed this limitation through the introduction of Gradient Optical Diffraction Tomography (GODT). GODT enables direct reconstruction of the 3D distribution of the RI derivative from a tomographic stack of shearing interferometry data, offering new imaging contrast with increased sensitivity. The algorithm has a strict theoretical foundation based on the first-order Rytov approximation within Wolf’s diffraction theory [5], ensuring its physical rigor and reliability. GODT requires both phase and amplitude inputs, similarly to conventional ODT methods. While the shearing phase is directly accessible via shearing interferometry, the corresponding amplitude is not. This missing information is recovered using supervised deep learning, enabling accurate GODT reconstruction. Together, these advances position GODT as a powerful extension of ODT, expanding its capabilities for high-sensitivity, label-free 3D imaging in complex biological samples.

主讲人照片

主讲人21

姓 名

Shitala Prasad

所在单位

Indian Institute of Technology, GOA, Indian

职称/职务

助理教授

简历

希塔拉·普拉萨德博士目前是印度果阿理工学院数学与计算机科学学院的助理教授。他是一位杰出的学者,其研究兴趣集中在深度学习、模式识别、计算机视觉和水下成像等前沿领域。普拉萨德博士拥有印度理工学院罗里克分校的博士学位,是图像分析和理解方面的专家。他的技能已在生物识别、农业/农业产业以及其他工业应用等众多领域得到应用。在前往果阿理工学院之前,普拉萨德博士曾在新加坡的资讯通信研究机构(I2R)A*STAR、新加坡以及新加坡国立大学和法国的 GREYC-CNRS 担任科学家二职和科学家一职,并曾担任博士后研究员。作为高级 IEEE 会员,普拉萨德博士因其对科学界的贡献而获得了广泛认可,他的多次专家演讲和杰出的出版物也证明了这一点。

报告题目

Cross-Modal Perception: Fusing Optoelectronic and Visual Data with Deep Learning

报告

主要观点

RGB cameras provide rich texture and color information, while infrared (IR) imaging offers robustness under low-light and adverse illumination conditions. Fusing these complementary modalities has emerged as a promising direction for improving object detection and person re-identification (ReID) in unconstrained environments. However, cross-modal perception faces significant challenges due to differences in spectral properties, resolution, and domain-specific noise. In this work, we present a deep learning–based framework for RGB–IR fusion, leveraging attention-guided feature alignment and domain-adaptive embedding strategies. For object detection, multimodal feature fusion improves recognition accuracy in scenarios where single modality inputs fail, such as nighttime surveillance or cluttered urban scenes. For person ReID, we introduce a modality-invariant embedding space that enhances identity consistency across RGB and IR domains, addressing appearance variations caused by lighting and viewpoint changes. Experimental evaluations on benchmark RGB–IR datasets demonstrate that the proposed fusion approach significantly outperforms unimodal baselines, achieving higher robustness and generalization across environments. By integrating the complementary strengths of RGB and IR sensing, our work advances multi-domain perception for security, transportation, and smart city applications, enabling reliable cross-modal detection and identification in real-world conditions.

主讲人照片

主讲人22

姓 名

Sachleen Singh

所在单位

University of the Witwatersrand, South Africa

职称/职务

博士

简历

萨奇伦·辛格毕业于卢迪亚纳的政府学院,获得了理学学士学位,期间在工业实验室和教学实验室都有过工作经验。他于 2017 年开始职业生涯,先是在一家工业水处理厂担任实验室助理,之后在国家教育研究与培训委员会(NCERT)担任实验室技术员。2019 年,他加入印度古达理工学院的物理教学实验室,对物理学的热情愈发高涨,在那里他对这门学科产生了浓厚的兴趣。为了进一步提升自己,他于 2019 年在印度罗帕尔理工学院攻读了物理学硕士学位,并在维沙瓦帕尔博士的指导下接受了光学方面的专业培训。完成硕士学业后,他于 2020 年加入南非比勒陀利亚大学的结构光实验室,作为安德鲁·福布斯教授的博士生进行研究。他的博士研究重点在于利用非线性原理来控制经典和量子结构光的各种自由度。

报告题目

Nonlinear control of structured light

报告

主要观点

Harnessing all degrees of freedom of light for a purpose, called structured light, has unlocked a suite of innovations across fields ranging from quantum communications to neural networks. When exposed to sufficiently intense light, nonlinear effects emerge, unleashing new mechanisms to control light’s structure. Traditionally such control has been achieved using tools relying on linear light-matter interactions, where modifying the material’s thickness or orientation enables the generation of light patterns. In contrast nonlinear optics allows us to control light with light itself, allowing us to structure multiple degrees of freedom (DoFs) of light. Here we introduce a novel approach to tailor both amplitude and phase of light. Combined with digital holography technique, this allowed us to diffract, correct and even detect light. It was achieved by structuring light with light itself, enhancing the frequency conversion fidelity beyond 90%. By leveraging these virtual light-based patterns, we further enhance the frequency conversion efficiency by more than 40%. While frequency conversion enables pattern creation across different wavelengths, high-fidelity detection is essential to extract the encoded information. We address this by introducing a nonlinear version of modal decomposition, allowing us to unravel information in the near-infrared wavelength using a basis encoded in the visible wavelength. With full control over both the creation and detection of structured light, we further deployed our system in a prepare-and-measure configuration over an aberrated optical channel. Remarkably, the phase conjugation inherent to nonlinear process allowed us to naturally correct for distortions at the speed of light, without the need for active measurements. We believe that our nonlinear framework for structured light unlocks powerful new capabilities, paving the way for future breakthroughs in optical communication, imaging, and spectroscopy.

主讲人照片

主讲人23

姓 名

Leonardo André Ambrosio

所在单位

University of São Paulo, Brazil

职称/职务

研究员

简历

莱昂纳多·A·安布罗西奥于 2002 年、2005 年和 2009 年分别在巴西坎皮纳斯大学电气与计算机工程学院获得了电气工程学士学位、硕士学位和博士学位。2009 年至 2013 年,他在坎皮纳斯大学电气与计算机工程学院的微波与光学系担任博士后研究员,并在美国费城的宾夕法尼亚大学开展了部分研究工作。目前,他是巴西圣保罗大学的副教授,圣保罗大学是巴西乃至南美洲最著名和知名的大学之一,其圣卡洛斯工程学院设有电气与计算机工程系。他的研究兴趣包括光子学、用于光学捕获和操控的光散射问题、超材料和等离子体学用于光学纳米电路和微结构光场以及非衍射光束的建模,这些研究有望在生物医学光学、电信和原子引导等领域得到应用,近期的研究方向还包括脑机接口和体积显示。

报告题目

Full analytical description of the remodeling of a “frozen wave”-type structured beam after an arbitrary number of pair of lenses for light scattering applications

报告

主要观点

This talk will discuss mathematical aspects related to analytical descriptions of a specific class of non-diffractive beams after passing through an arbitrary number of pairs of optical lenses (4f systems). Such beams — known in the literature as "Frozen Waves" (FWs) — are constructed through specific and discrete superpositions of Bessel modes (or beams) of the same frequency. In this work, a paraxial regime is assumed in which a scalar treatment is fully justified. The rationale for this work is to allow to subsequently express the magnified/demagnified field pattern observed in recent experiments on optical trapping of micrometric particles in holographic optical tweezers, and in continuous depth optical holography for two- and three-dimensional imaging, within a formalism known as Generalized Lorenz-Mie Theory (GLMT) for spherical and homogeneous scatterers. In addition to these applications, FWs are expected to be incorporated as trapping or illumination beams in several interesting applications, such as optical trapping displays based on photophoretic forces and thermal imbalance, virtual and augmented reality, optical imaging, remote sensing and alignment of optical systems, and the fabrication of optical nanochannels in glass, among others. The results obtained in this work, when compared with those observed experimentally using one, two or more pairs of lenses, allow us to fully validate the present approach, and future work can explore it to obtain a complete description in the GLMT, in terms of the beam shape coefficients (BSCs) of the output optical field, which is a reshaped version of the original beam after an arbitrary number of lenses.

主讲人照片

主讲人24

姓 名

Weifeng Yang

所在单位

Hainan University, China

职称/职务

教授

简历

杨伟峰,教育部“长江学者奖励计划”特聘教授,荣获国家优秀博士学位论文奖,海南省杰出贡献型优秀专家,海南省杰出人才。他担任中国计算物理学会计算原子与分子物理委员会委员、海南省物理教学指导委员会主任以及《光学学报(网络版)》编委。他长期从事强场原子与分子物理以及阿秒电子动力学的研究,提出了诸如基于深度学习的强场动力学费曼路径积分方法和大规模电子轨道加权统计时间分析等方法。他的研究成果发表在《物理评论快报》和《光:科学与应用》等顶尖期刊上,并荣获海南省和教育部自然科学二等奖。他主持过多项由国家自然科学基金资助的项目,包括重点项目、重大研究计划培育项目以及一般项目。

报告题目

Complex-time dynamical processes in tunneling

报告

主要观点

Attosecond dynamics is a frontier research direction in the field of strong-field atomic and molecular physics, with its core aim being to reveal the microscopic mechanisms of tunneling ionization and the resulting attosecond electron dynamics in atoms and molecules under intense laser fields. Real-time tracking and imaging of ultrafast electron dynamics are essential approaches for understanding and exploring photophysical, photochemical, and photobiological processes. In this work, we employ a quantum-trajectory method that incorporates sub-barrier Coulomb interactions to investigate the complex-time dynamics of tunneling ionization of atoms and molecules in strong laser fields, thereby uncovering the influence of sub-barrier interactions on attosecond angular streaking measurements and on resonance-enhanced ionization in molecules.

主讲人照片

主讲人25

姓 名

Jing Chen

所在单位

University of Science and Technology of China, China

职称/职务

教授

简历

陈静,中国科学技术大学物理学院的教授。其主要研究方向为强激光场与原子及分子相互作用的理论研究。通过与国内强场原子与分子物理领域的实验团队密切合作,他对原子和分子的激发、电离、分解以及高次谐波产生等动态过程进行了全面且系统的研究。他在包括《物理评论快报》、《光学》、《物理评论 A》和《新物理学杂志》等顶尖期刊上发表了超过 200 篇论文。其研究成果被认定为中国“十一五”期间的重大基础研究进展之一,是 2012 年中国高校十大科技成就之一,也是 2013 年中国的一项关键光学成就。他主持或参与了十余项由中国国家自然科学基金、国家 973 项目、国家 863 项目、科技部重点项目以及中国工程物理研究院科技基金资助的科研项目。2014 年,他荣获国家杰出青年科学基金;2015 年,入选国家“万人计划”;2016 年,被授予国务院政府特殊津贴;2018 年,被评为中国工程物理研究院“杰出专家”。

报告题目

Non-perturbative perspective of atomic resonance ionization in intense laser fields

报告

主要观点

Within the framework of scattering matrix theory, we have developed a quantum model for resonance ionization of atoms via Rydberg states in strong laser fields, namely the Freeman resonance ionization process. Computational analysis reveals that this process exhibits new non-perturbative features that differ from the conventional picture of direct ionization from the ground state into dressed continuum states, where the final electron angular distribution corresponds to the number of absorbed photons. Instead, this process involves multiphoton transitions between dressed states. Because dressed states contain components with different angular momenta, the transitions no longer correspond to definite changes in angular momentum. The angular distribution of the final-state electrons is determined by the interference between different multiphoton transition pathways and by the angular distribution of the resonant Rydberg states.

主讲人照片

主讲人26

姓 名

Liangyou Peng

所在单位

Peking University, China

职称/职务

教授

简历

彭亮友,现任北京大学博雅特聘教授,此前曾担任北京大学物理学院副院长以及学术学位评定委员会物理分委员会主席。他于 1998 年毕业于华中师范大学,2005 年在英国贝尔法斯特女王大学获得博士学位,并在美国进行了博士后研究。2007 年,他回到中国加入北京大学物理学院。他的长期研究重点在于激光-物质相互作用理论、离子阱量子计算和量子模拟。他已在国际知名期刊上发表了 150 多篇研究论文,其中包括 15 篇发表在《物理评论快报》和《自然通讯》上。他获得了多个重要人才项目的支持,包括教育部“新世纪优秀人才计划”、“长江学者奖励计划”青年学者项目、优秀青年科学基金以及中国国家自然科学基金杰出青年科学基金。他的荣誉和奖项包括:基础光学领域的饶毓泰奖以及中国物理学会颁发的物理领域饶毓泰奖、高等教育机构优秀科研成果自然科学一等奖(教育部颁发)、被授予美国物理学会杰出评审员称号。此外,他还担任北京市海淀区科学技术协会副主席、海淀区政协委员以及海淀区海外联谊会理事。

报告题目

Berry phase in laser–solid interactions

报告

主要观点

In quantum mechanics, a quantum wave packet may acquire a geometric phase when it evolves along a periodic trajectory in parameter space. In condensed matter systems, the Berry phase plays a crucial role in fundamental phenomena such as the Hall effect, orbital magnetism, and polarization. Elucidating the quantum nature of these processes often requires highly sensitive quantum techniques, such as tunneling, which is the dominant mechanism in scanning tunneling microscopy and tunneling transport devices. In this work, we integrate the two key phenomena of geometric phase and tunneling, and observe a complex-valued Berry phase through strong-field light–matter interactions in solids—a phase that was theoretically predicted by M. Berry more than three decades ago. By employing attosecond-precision control of tunneling barriers, we experimentally measured the imaginary part of the Berry phase accumulated by electrons during tunneling within subcycles of the optical field. Simulations based on semiconductor Bloch equations accurately reproduce the experimental results and support the underlying physical interpretation. This study opens new theoretical and experimental directions for the physics of geometric phases and their realization in condensed matter systems, and extends strong-field optical metrology in solids to the exploration of topological quantum phenomena.

主讲人照片

主讲人27

姓 名

Xiaojun Liu

所在单位

Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, China

职称/职务

教授

简历

刘小军,中国科学院精密测量科学与技术创新研究院的研究教授及博士生导师。他长期从事原子与分子光学物理的研究工作,并对利用超快激光、超快控制以及极紫外(XUV)光频梳和精密测量进行的原子分子相互作用的物理研究进行了系统性探索。他已发表了超过 120 篇研究论文,其中包括 20 篇发表在《物理评论快报》上,并受邀由美国物理学会撰写了其领域的综述文章。他领导或完成了多项重大国家研究任务,包括中国国家自然科学基金创新研究群体项目、国家杰出青年科学基金以及国家重大科学仪器开发项目。目前,他担任中国物理学会原子与分子物理分会主席以及中国物理学会秋季会议组织委员会成员。

报告题目

Extreme Ultraviolet Optical Frequency Combs and Their Applications

报告

主要观点

As a product of the ingenious combination of femtosecond optical frequency combs and strong-field high-order harmonic generation, the extreme ultraviolet (XUV) optical frequency comb—abbreviated as the XUV frequency comb—is currently the only tabletop coherent light source in the XUV region with a linewidth reaching the kilohertz level. It has significant applications in precision measurement, attosecond physics, and ultrafast control of matter. Since 2016, we have been independently developing the XUV frequency comb and have overcome several key technical challenges, including high-precision locking of the repetition rate and carrier-envelope offset frequency of high-power femtosecond lasers, kilowatt-level femtosecond enhancement cavities, and efficient intracavity high-order harmonic generation and output coupling. These advances enabled us to successfully realize the first domestically developed XUV frequency comb system in China. Based on the high-repetition-rate (~100 MHz) femtosecond laser provided by this system, we have carried out research on strong-field ultrafast physics under extreme conditions. By combining spatial light-field control of femtosecond laser pulses with cavity enhancement techniques, we realized vortex ultraviolet frequency combs. With the aid of supersonic molecular beam preparation, we further achieved precision spectroscopy of atoms and molecules in the vacuum ultraviolet region. In the next stage, we will continue to enhance the overall performance of the XUV frequency comb and advance its major scientific applications in the field of precision measurement.






主讲人照片

主讲人28

姓 名

Haifeng Xu

所在单位

Jilin University, China

职称/职务

教授

简历

徐海峰,吉林大学原子与分子物理研究所的教授及博士生导师。他在中国科学技术大学获得了理学学士和博士学位。随后,他在加利福尼亚大学戴维斯分校、石溪大学和马里兰大学进行了博士后研究。2008 年,他回到吉林大学。他的研究领域包括强场原子与分子物理学,以及分子电子态的结构和动力学。他领导了多项由国家自然科学基金委员会和吉林省科技厅资助的研究项目。作为主要参与者,他还参与了科技部重点研发计划、大规模国际合作项目以及国家自然科学基金重点项目。他发表了 100 多篇被 SCI 收录的论文。

报告题目

Desorption of Atomic and Molecular Anions in Ultrafast Laser Fields

报告

主要观点

This report presents our study on the photodesorption processes of atomic anions (H and I) and molecular anions (SF₆⁻) in ultrafast laser fields, based on a home-built mass-selected negative ion source combined with a time-of-flight mass spectrometer/electron velocity imaging detection system. By measuring the desorption yields, as well as the kinetic energy and angular distributions of desorbed photoelectrons under various ultrafast laser fields, and combining these results with theoretical calculations, we have revealed in depth the physical mechanisms and partial-wave interferences involved in multiphoton desorption, above-threshold desorption, and two-electron desorption channels of anions. For molecular anions, we further explored the roles of molecular orbitals and excited-state resonances in the desorption process.

主讲人照片

主讲人29

姓 名

Yujun Yang

所在单位

Jilin University, China

职称/职务

教授

简历

杨玉军,教授兼博士生导师。其主要研究方向为强激光与物质相互作用的理论研究。迄今为止,他已发表了超过 150 篇学术论文,并领导或参与了多项国家级和省级研究项目。

报告题目

Simulating High-Order Harmonic Generation in Gases Using Machine Learning Approaches

报告

主要观点

High-order harmonic generation (HHG) in gases is an important approach for producing ultrashort attosecond pulses. Owing to the relatively low conversion efficiency, further investigations of the harmonic emission process are required. The complexity of the HHG process poses significant challenges for rapid theoretical simulations. By applying machine learning schemes such as time-series analysis and neural networks, we have substantially improved the computational efficiency of high-order harmonic generation.

主讲人照片

主讲人30

姓 名

Chengyin Wu

所在单位

Peking University, China

职称/职务

教授

简历

北京大学博雅特聘教授,专注于强场物理学和阿秒科学领域。他的研究包括对超快和超高强度激光与物质相互作用的实验研究,研究对象涵盖从原子、分子、团簇到固体材料以及微/纳米结构等各类系统。

报告题目

Femtosecond-Laser-Induced Electron Dynamics in Condensed-Phase Matter

报告

主要观点

Over the past decade, the interaction of ultrafast and ultraintense lasers with matter has expanded from gas-phase atoms and molecules to solid-state micro- and nanostructures, revealing great potential for groundbreaking scientific discoveries. This report presents our home-built time-resolved photoemission electron microscope and solid-state high-order harmonic spectrometer, as well as recent progress in probing and controlling electron dynamics in condensed-phase matter based on these instruments.

主讲人照片

主讲人31

姓 名

Weidong Li

所在单位

Shenzhen Technology University, China

职称/职务

教授

简历

李卫东,博士,深圳技术大学工程物理学院的杰出教授及博士生导师。他于 1990 年在山西大学获得物理学学士学位,1997 年在山西大学获得理论物理学硕士学位。2002 年,他在中国科学院物理研究所获得物理学博士学位,并于同年在意大利特伦托大学和玻色-爱因斯坦凝聚态研究中心进行了博士后研究。此后,他还曾在美国、法国、香港等地的大学和研究机构进行短期合作研究。他的主要研究领域是量子理论。他是《物理评论》(美国物理学会)和《欧洲物理学杂志》等期刊的审稿人,也是《量子科学前沿》杂志的副主编。他于 2008 年入选教育部“新世纪优秀人才计划”,并于 2021 年获得深圳“鹏程杰出教授”(B 类)称号。

报告题目

Approximate solution and application of periodic driven two-level system

报告

主要观点

By utilizing the complete solution of time-invariant solutions, the first-order approximate solution for a two-level system under periodic driving is obtained, providing analytical expressions applicable to degenerate, near-degenerate, and non-degenerate conditions under weak coupling. Comparison with numerical results from Floquet theory reveals that the approximate analytical expressions agree well with numerical results over a considerable range. This demonstrates the validity of the perturbation method under time-invariant conditions. The importance of the system's translational symmetry is emphasized: in the absence of coupling, the instantaneous eigenstates of Floquet have analytical expressions, where the eigenstates are linear superpositions of the original eigenstates modulated by Bessel functions, clearly exhibiting translational symmetry; under weak coupling, the instantaneous eigenstates of the Floquet two-level system still retain translational symmetry; the system's dynamics can be equivalently described as a two-level system of Floquet transient states, also a consequence of translational symmetry. Using this analytical solution, the Rabi oscillation behavior of the system under periodic driving is investigated; under near-resonance conditions, the results align with the Van Vleck (GVV) approximation; the asymmetry of the Rabi spectrum under periodic driving is also discussed. This provides an effective method for a deeper understanding of Floquet phenomena.

主讲人照片

主讲人32

姓 名

Zengxiu Zhao

所在单位

National University of Defense Technology, China

职称/职务

教授

简历

赵增秀教授于 2005 年在美国内布拉斯加州立大学获得博士学位。2005 年至 2006 年期间,他在加拿大渥太华大学进行了博士后研究,之后便加入了国防科技大学的教师队伍。2008 年 12 月,他被任命为正教授。

报告题目

Coherent emission and attosecond absorption of molecules driven by strong laser fields

报告

主要观点

Strong field ionization (SFI) of molecules prepares the ions in coherent yet exotic exaction states which manifest extraordinary emission and absorption properties. In this talk, we present theoretical and experimental explorations of the multi-dimensional dynamics of atoms driven by strong laser fields, from SFI of the neutral, multiphoton excitation of the ion to coherent emission. We show that coherent supercontinuum can be generated in either the ultraviolet for molecules or EUV region for noble gas atoms. With the state-of-art attosecond transient absorption spectroscopy, we demonstrate that the subcycle dynamics and the quantum coherence can be probed in attoseconds. It is shown that the modulation of the absorbance provides importance clue of the electronic and vibronic coherence as well as the time-delay of resonant absorption of the ions.

主讲人照片

主讲人33

姓 名

Xiaoxin Zhou

所在单位

Northwest Normal University, China

职称/职务

教授

简历

周小新,汉族,出生于河南新安县。1982 年毕业于西北师范大学获得学士学位,1989 年毕业于成都科技大学(现为四川大学)获得硕士学位,2001 年毕业于中国科学院物理与数学研究所(武汉)获得博士学位。他曾到英国纽卡斯尔大学和美国堪萨斯州立大学进行学术交流和合作研究。目前,他担任西北师范大学教授及博士生导师,主要从事强激光与原子/分子相互作用的理论研究。

报告题目

Enhancement of Single-Order High-Order Harmonics

报告

主要观点

High-order harmonic radiation is coherent radiation emitted from the interaction between lasers and atoms, with a frequency range extending from visible light to the extreme ultraviolet (XUV) and even soft X-ray regions. It is one of the new-generation approaches to obtaining coherent extreme ultraviolet light sources. The acquisition of single-order high-order harmonics with specific frequencies is of great significance for fields such as coherent diffraction imaging. This report theoretically explores the possibility of achieving intense single-order harmonic emission by controlling the waveform of laser pulses and using two-color few-cycle lasers to drive noble gas atoms.


主讲人照片

主讲人34

姓 名

Bingbing Wang

所在单位

Institute of Physics, CAS, China

职称/职务

教授

简历

王冰冰,女,中国科学院物理研究所研究员及博士生导师,中国科学院大学教授。1996 年,她在吉林大学原子分子物理研究所获得博士学位。1996 年至 1998 年,她在中国科学院物理研究所从事博士后研究。2001 年至 2003 年,她在加拿大多伦多大学从事博士后工作。2010 年起,她担任现职。她的主要研究兴趣在于强激光场与原子分子之间的相互作用,包括高阶谐波产生、阿秒脉冲应用、分子结构检测以及非顺序电离过程。提出了非微扰量子电动力学理论来处理电子重碰撞过程。建立了强场全量子理论与半经典理论之间的对应关系,并发现了分子电离光谱的量子相干条纹机制。提出了利用阿秒脉冲控制高次谐波产生的理论方案,并揭示了激光脉冲的载流子相位效应机制。

报告题目

The Process of Single-Photon Compton Scattering of Bound Electrons in an Intense Laser Field

报告

主要观点

We develop the strong-field frequency-domain theory to study the single-photon Compton scattering process of bound electrons in a high-frequency intense laser field. We discover and explain the phenomenon that, with the increase of incident photon energy, the angular-resolved spectrum of Compton-scattered photons transitions from a symmetric distribution of forward scattering and backward scattering to an asymmetric one. We further advance this theory to investigate the Compton scattering process of positronium.

主讲人照片

主讲人35

姓 名

Guangwei Hu

所在单位

Nanyang Technological University, Singapore

职称/职务

助理教授

简历

胡光伟博士是新加坡南洋理工大学电子与电气工程学院的南洋助理教授。他于 2016 年在哈尔滨工业大学获得物理学学士学位,2020 年在新加坡国立大学获得博士学位(期间曾在得克萨斯大学奥斯汀分校和纽约城市大学阿斯克雷分校做访问学者),并在新加坡国立大学和斯坦福大学进行过博士后研究。他的研究兴趣在于纳米光子学,包括相关理论、数值建模以及诸如二维材料等材料,这些技术可广泛应用于生物成像、信息处理、光子芯片、能源等领域。他已发表了 100 多篇论文,包括《自然》(5 篇)、《科学》、《自然·光子学》(2 篇)、《电子光》、《自然·纳米技术》、《自然·电子学》、《自然·通讯》、《科学进展》、《物理快报》、《光:科学与应用》等。他的工作曾被《物理世界》评为 2020 年物理学十大突破之一,被《光学与光子学新闻》(2021 年“光学之年”)评为中国 2021 年十大光学突破之一,以及被其他众多媒体和机构提及。他荣获了纳米光子学领域的早期职业奖(2023 年)、《麻省理工科技评论》2022 年“35 岁以下创新者”(中国)、《福布斯》2023 年“30 岁以下精英”(亚洲)、光学基金会设立的 20 周年挑战奖、《光:科学与应用》2020 年“光之新星”奖、新加坡国立大学校长研究生奖学金以及多项其他奖项。他是 npj 纳米光子学的副主编。

报告题目

Hyperbolic Polaritonics with Bulk Optical Crystals

报告

主要观点

Confining the Mid-IR photons (~10 µm) at nanoscale is important to develop Mid-IR nanophotonics. Recent focuses on the phonon polaritons in anisotropic crystals. Such materials can sustain extreme anisotropy, known as hyperbolic responses, to support extremely large momentum, thus confining Mid-IR photons to nanoscale. There are several emerging platforms, including the van der Waals materials. One can further apply the twisted stacking to further design the platforms of van der Waals materials. However, the mass production for practical Mid-IR nanodevices based on them is not available; besides, the propagation distance is limited. Here, I will discuss our recent efforts on study the hyperbolic polaritonic with natural bulk crystals. I will first show how new modes can be sustained in those natural crystals, such as calcite. Herein, the highly confined Mid-IR polaritons can propagate like a ray, in a long distance (~20µm) at the surface of bulk crystals. Moreover, I will show how the crystal symmetry is important to regulate the polaritonic behaviors. Specifically, we will discuss how monoclinic crystal can support the asymmetric propagation of polaritons, due to the necessary non-Hermitian nature of the system, and provide experimental evidence of the system. Our theoretical exploration and experimental efforts would be very important for the mass-producible platforms based on natural bulk crystals for mid-IR nanophotonics and hyperbolic polaritonics.

主讲人照片

主讲人36

姓 名

Lin Wang

所在单位

Rutherford Appleton Laboratory, UK

职称/职务

研究员

简历

林于 2010 年在诺丁汉大学的迈克·索梅克(弗里恩)教授的指导下获得了电气与电子工程博士学位。在此期间,他开发了一种广域显微技术,通过结合固体浸没透镜和结构照明显微镜实现了低于 100 纳米的分辨率。随后,他加入了由尼尔·亨特(FRS)教授领导的谢菲尔德大学研究小组,担任博士后研究员。在此职位上,林开发并应用了多种超分辨率显微镜和其他功能性生物成像技术,以表征生物光合膜和光捕获蛋白复合物的结构和功能。林于 2015 年底被任命为英国研究与创新科学与技术设施委员会中央激光设施的永久研究员。他的职责是领导超分辨率显微镜领域的用户操作计划,并开发用于生物成像的新显微镜技术。

报告题目

Reinforced optical cage systems enable drift-free single-molecule localization microscopy

报告

主要观点

Single-molecule localization microscopy (SMLM) achieves nanometer-scale resolution but is compromised by sample drift during image acquisition. We present Reinforced Optical Cage Systems (ROCS), a novel approach that eliminates drift at its mechanical source rather than correcting it through complex image post-processing or fiducial markers. ROCS employs perforated optomechanical components interconnected by tungsten-steel rods in a design proven by mechanical stability simulations. Our ROCS-based microscope demonstrated exceptional stability with mean sample drift of 7 nm over 2 hours in widefield fluorescence imaging and approximately 10 nm over 15 minutes in SMLM, obtaining super-resolution and high-fidelity without the need for drift correction. This framework offers a straightforward, cost-effective, and low-maintenance solution that enhances accessibility to high-performance super-resolution microscopy. By tackling the fundamental issue of mechanical instability, ROCS enables more reliable precision instrumentation for the broader scientific community.


主讲人照片

主讲人37

姓 名

Zhongxiang Shen

所在单位

Yangtze Delta Region Academy of Beijing Institute of Technology, China

职称/职务

教授

简历

沈中祥于 1987 年从中国成都的电子科技大学获得电气工程学士学位,1990 年从中国南京的东南大学获得硕士学位,1997 年从加拿大安大略省渥太华的滑铁卢大学获得博士学位,所学专业均为电气工程。1990 年至 1994 年,他在中国南京航空航天大学工作。1997 年,他作为高级技术专员加入加拿大剑桥的康德维公司。1998 年,他分别在哈佛大学戈登·麦凯实验室(位于马萨诸塞州剑桥市)和密歇根大学安娜堡分校的辐射实验室(位于密歇根州安娜堡市)各工作了六个月,期间他先是以博士后研究员的身份在哈佛大学戈登·麦凯实验室工作,然后在密歇根大学安娜堡分校的辐射实验室工作。从 1999 年 1 月至 2023 年 12 月,他是新加坡南洋理工大学的教职人员(助理教授、副教授和正教授)。如今,他是北京理工大学长三角研究院(位于浙江嘉兴)的一名战略科学家。沈博士在 2009 年担任了 IEEE MTT/AP 新加坡分会的主席。2010 年 1 月至 2014 年 8 月,他担任 IEEE AP-S 活动委员会主席。2014 年 7 月至 2018 年 12 月,他担任 IEEE AP-S 的秘书长。2017 年 1 月至 2019 年 12 月,他被选为 IEEE AP-S 的顾问委员会成员。2016 年 7 月至 2022 年 7 月,他担任《IEEE 无线天线与传播学报》的副主编。2021 年 1 月至 2023 年 12 月,他担任 IEEE AP-S 的杰出讲师。沈教授目前是 IEEE 开放期刊《天线与传播学报》的主编。沈教授是 IEEE 会士。他的研究兴趣包括各种无线通信系统的小型和平面天线、频率选择结构和吸收器的分析与设计、用于模拟射频/微波组件和天线的混合数值技术。他发表了超过 240 篇期刊论文(其中 180 篇发表在 IEEE 期刊上),还在国际会议上发表了近 200 篇论文。

报告题目

Wide-Band Antennas of Low Profile

报告

主要观点

Recent years have witnessed the growing demand of more wireless connectivity and services. This has posed a big challenge for antenna engineers, which is to design wide-band antennas of low profile. The paradox of achieving wide-band operation while retaining a low antenna profile size appears difficult to resolve. This talk takes a careful look at this contradicting challenge and proposes several wide-band antennas of extremely low profile, including design considerations and experimental verifications.

主讲人照片

主讲人38

姓 名

Kuanfang Ren

所在单位

University of Rouen Normandy, France

职称/职务

教授

简历

任宽芳获得了陕西师范大学的物理学学士学位、西安电子科技大学的无线电物理学硕士学位以及法国鲁昂大学的博士学位。目前,他是鲁昂大学的正教授。他的主要研究兴趣包括:1)波的瑞利理论的发展(矢量复瑞利模型(VCRM)与物理光学相结合)——用于任意形状物体和波的散射。2)对整形激光束与粒子相互作用的理论研究。3)用于测量微小粒子的光学技术及其在流体力学和燃烧中的应用。4)激光束对粒子施加的辐射压力和扭矩的理论预测。他已在科学期刊上发表了超过 100 篇论文,并在国家和国际会议上发表了 135 篇报告。

报告题目

Airy theory improved with uniform approximation and Vectorial Complex Ray Model

报告

主要观点

The classical Airy theory has long served as a foundational framework for modeling scattering diagrams of rainbows of a spherical particle and optical diffraction near caustics in more general cases. However, its accuracy and applicability are limited in regions where rapidly varying phase and amplitude coexist. Many researchers have contributed to the improvement of this situation by different methods: using higher order approximation for phase and amplitude, stretching argument in Airy function and application of uniform approximation, etc. These methods have improved considerably the precision in the prediction of the first order rainbows. But evident discrepancy from rigorous Debye or Mie theory still exists for rainbows of high orders and there is no practical means to predict the scattered field around the caustic regions of a given non-spherical particles like ellipsoids and pendant drops. This talk will give a survey on the evolution of Airy theories and present a method based on the combination of uniform approximation and Vectorial Complex Ray Model (VCRM), which enables precise treatment of both spherical and non-spherical particles. The uniform approximation ensures smooth transitions between lit and shadow regions, removing discontinuities in ray model, while the VCRM incorporates polarization-dependent phase and amplitude corrections, allowing for accurate modeling of high order rainbows. It is expected that this combined approach significantly enhances predictive fidelity, particularly in focal regions and near optical singularities, while retaining computational efficiency.

主讲人照片

主讲人39

姓 名

Ankur Gogoi

所在单位

Jagannath Barooah University, India

职称/职务

助理教授

简历

安库尔·戈戈伊博士于 2004 年在印度迪布尔加尔大学获得物理学学士学位,随后在 2006 年和 2012 年分别在印度特兹普尔大学获得物理学硕士学位和哲学博士学位。2016 年至 2018 年期间,他在国立阳明交通大学生物光子学研究所从事博士后研究,在此期间他进一步精进了非线性光学显微镜和内窥镜方面的专业知识。目前,戈戈伊博士是印度阿贾纳德·巴罗阿大学物理系的助理教授。在此之前,他曾担任阿萨姆卡齐朗加大学和特兹普尔的吉里扬达·乔杜里管理与技术学院的教职。在过去 19 年里,他的研究重点在于光电子学、光子学和纳米技术,尤其侧重于开发基于激光的先进光学计量仪器、共聚焦激光扫描显微镜和用于生物医学和材料科学应用的内窥镜设备。戈戈伊博士是多份具有重大影响力的国际期刊的活跃审稿人,并在众多知名科学期刊上发表了超过 38 篇经过同行评审的论文。此外,他还曾在 40 多次会议和研讨会上分享了自己的研究成果。戈戈伊博士还担任过多部科学书籍的编辑、多个知名期刊的客座编辑,并且是印度光学学会(OSI)和印度天文学会(ASI)的终身会员。

报告题目

High-Resolution Carrier Transport and Efficiency Mapping in Semiconductor Devices with Laser Scanning OBIC Microscopy

报告

主要观点

Laser scanning optical beam-induced current (OBIC) microscopy is a powerful, non-destructive technique for high-resolution characterization of semiconductor devices, enabling visualization of active regions, identification of structural defects, and quantification of key parameters such as carrier lifetime and diffusion length. Despite its capabilities, commercial OBIC systems remain prohibitively expensive for many laboratories and often lack the modularity required for experimental customization. In this presentation, we describe the design and straightforward construction of a cost-effective laser scanning OBIC microscope, built entirely from commercially available optical and electronic components and paired with a custom-developed LabVIEW-based control and data acquisition system. The platform integrates a multispectral laser source, a galvanometer mirror scanning unit for rapid raster imaging, precision scan/tube lens assemblies, and an inverted microscope. Hardware control is implemented via a National Instruments PCIe-6351 interface, enabling synchronized beam scanning, photocurrent acquisition, and real-time image reconstruction. The software features flexible scanning patterns (unidirectional, fast-reset, and bidirectional), integrated error handling, and visualization tools, and is architected to support additional imaging modalities such as electroluminescence, polarization-resolved imaging, and fluorescence anisotropy. Preliminary validation was carried out on a silicon PIN photodiode in photovoltaic mode using a 20× objective, achieving a focused spot size of 1.22 μm. OBIC imaging produced spatially resolved photocurrent maps and internal quantum efficiency (IQE) distributions, clearly resolving homogeneous active regions as well as non-photosensitive boundaries. The OBIC microscope presented here delivers high spatial resolution and modular expandability, offering a transformative alternative to commercial systems for semiconductor diagnostics, solar cell performance evaluation, and defect analysis. Its adaptability and multimodal compatibility position it as a versatile research tool for both academic and industrial laboratories.

主讲人照片


123

南校区地址:陕西省西安市西沣路兴隆段266号

邮编:710126

北校区地址:陕西省西安市太白南路2号

邮编:710071

访问量:

版权所有:西安电子科技大学    建设与运维:信息网络技术中心     陕ICP备05016463号    陕公网安备61019002002681号