9月30日:北校区会议中心303-1 时间15:00-16:00,
题目: On a construction of Lyapunov functions based on neural networks and homogeneous approximations
报告摘要:A design method for constructing a local Lyapunov function for a general class of nonlinear systems using artificial neural networks is presented. To avoid the singularity at the origin, we employ a homogeneous approximation of the system. An extension to the problem of simultaneous design of a stabilizing control and a Lyapunov function is discussed. An example of a mechanical system with power nonlinearities illustrates the efficiency of our approach.
报告人介绍:Denis Efimov 2001年获得圣彼得堡国立电气工程大学(俄罗斯)自动控制博士学位;2006 年在俄罗斯科学院圣彼得堡机械工程问题研究所获得工程科学博士。从 2006 年到 2011 年,在法国苏佩莱克的L2S CNRS实验室、比利时列日大学的蒙特菲奥雷学院研究所和法国波尔多大学的IMS CNRS 实验室工作。2011年入职法国国家信息与自动化研究所(里尔-北欧中心)。从 2018 年开始为法国国家信息与自动化研究所 Valse 团队负责人。主要研究领域包括非线性系统控制、齐次系统估计与控制、监督控制系统、区间观测器估计、有限时间估计和稳定性研究等。目前发表150多篇期刊论文,并且多个 IFAC TC 的成员和 IEEE 的高级成员。
9月30日:北校区会议中心303-1时间16:00-17:00,
报告题目: Constructing complete-type Lyapunov-krasovskii functionals for nonlinear time-delay systems
报告摘要:Original approaches to the complete-type Lyapunov-Krasovskii functionals constructing for some classes of nonlinear time-delay systems are developed. Homogeneous systems, Persidskii-type systems, complex systems describing interaction of linear subsystems and strongly nonlinear homogeneous ones, Lur'e indirect control systems with sector nonlinearities of the power type and mechanical systems with homogeneous acting forces are analysed. Using the proposed constructions of functionals, new asymptotic stability conditions and estimates of solutions for the considered systems are determined.
报告人介绍:Aleksandr Aleksandrov为俄罗斯圣彼得堡国立大学应用数学与控制过程学院教授,其主要研究领域包括动态系统控制、齐次系统控制、稳定性理论、时变和混杂系统、复杂系统、时滞系统、非线性振荡系统控制,并且长期深入开展了上述控制理论在机器人、机电系统、航空航天等领域应用研究。Alexander Aleksandrov目前已经发表期刊和会议论文250多篇,并且近10年以第1作者发表 SCI期刊论文40多篇, 论文主要围绕机器人、机电系统以及航空航天等领域的相关控制理论以及应用问题开展研究。此外,Alexander Aleksandrov以第1作者主编撰写控制理论专著3部。
10月09日:北校区会议中心303-1时间10:00-11:00,
报告题目: Parameter Identification: A Heavy-Ball-based Algorithm
报告摘要:In this lecture, we present a new parameter identification algorithm for linear regression systems with constant unknown parameters and noisy measurements. The proposed algorithm is based on a new accelerated version of the heavy–ball method, which uses a nonlinear extension of Kreisselmeier’s filters. For the noise–free case, the algorithm can identify constant parameters accurately and in finite time, assuming persistence of the regressor’s excitation. A local stability analysis is developed using the Lyapunov function approach. The robustness characterizations for the noisy case are provided in terms of the input–to–state stability property for the parameter identification error dynamics. The effectiveness of the proposed parameter identification algorithm is depicted with some simulation results.
10月09日:北校区会议中心303-1时间11:00-12:00,
报告题目: An Enhancement of Adaptive Observer Accuracy based on the Heavy–Ball Algorithm
报告摘要:In this lecture, we present a heavy–ball algorithm–based adaptive observer for the simultaneous estimation of states and constant parameters in a class of uncertain nonlinear systems subject to external disturbances. The estimator integrates a Luenberger–like observer for state estimation with a heavy–ball–inspired optimization algorithm to identify unknown constant parameters. The observer achieves exponential convergence of both state and parameter estimates. A Lyapunov–based analysis is employed to establish closed–loop stability under the standard persistence of excitation condition. The effectiveness of the proposed approach is validated through simulation studies, which demonstrate improved estimation accuracy compared to conventional adaptive observers.
报告人介绍:Hector Rios Barajas为墨西哥拉古纳理工学院副研究员,墨西哥国家二级研究学者以及IEEE资深会员。Hector Rios Barajas主要研究领域主要包括齐次系统稳定性分析、有限时间估计与控制、滑模控制及其应用、线性和非线性以及混杂系统估计、故障检测/隔离和识别问题;脉冲系统的稳定性分析、约束系统控制、以及无人机和地面车辆的鲁棒控制问题。自2017年至今Hector Rios Barajas负责和参与多项墨西哥国家技术部关于移动机器人和四旋翼等类型机器人以及机电系统中建模与控制、容错控制等理论研究以及工程开发项目,并且负责了墨西哥国家技术部与法国国家信息与自动化研究所的基于人工智能的多机器人控制方法项目。目前Hector Rios Barajas已经发表期刊和会议论文150余篇,包括控制领域顶级期刊IEEE Transactions on Automatic Control和Automatica论文10多篇。此外,参与撰写控制理论专著6部。
10月09日:北校区会议中心303-1 时间15:00-16:00,报告人:Denis Efimov
报告题目: Convergence conditions in a class of periodic nonlinear time-delay systems
报告摘要:The new existence conditions for periodic steady-state solution in time-delay systems are presented. The main advantage of this result is that highly nonlinear (without meaningful linear approximation) dynamics are allowed for analysis. These conditions are developed for Persidskii and Lotka-Volterra time-delay systems. The efficiency of the approach is demonstrated on academic examples of these models.
10月09日: 北校区会议中心303-1 时间16:00-17:00,报告人:Denis Efimov
报告题目: Observer design for Parameter-Varying Persidskii Systems (PVPs)
报告摘要:The state observer design for parameter-varying Persidskii systems is addressed in this talk. These systems exhibit dynamics that depend both on time-varying parameters, as in the Linear Parameter Varying (LPV) framework, and sector nonlinearities of the state, as in classical Persidskii systems. A state observer design is proposed, and its stability is analyzed using parameter-(in)dependent Lyapunov functions. The conditions for tuning the observer gains are derived within the input-to-output stability framework. They are first expressed as parameterized matrix inequalities, and then further reduced to linear ones under additional mild assumptions. The effectiveness of the proposed design is shown through an example.
10月10日: 北校区会议中心303-1时间10:00-11:00,报告人:Aleksandr Aleksandrov
报告题目: On the asymptotic stability with respect to a part of variables for some classes of nonlinear systems
报告摘要:The problem of partial stability for some classes of nonlinear systems is considered. Both cases of delay-free and time-delay systems are studied. Using the Lyapunov direct method, sufficient conditions of the asymptotic stability with respect to a part of variables and polystability are derived. These results are an extension of the classical Lyapunov--Malkin theorem on systems with essentially nonlinear first approximation. Some examples of applications of the proposed approaches to the stability analysis of nonlinear mechanical systems are provided.